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Type two Theory of Effectivity

Computability
• Represented spaces, admissibility (Weihrauch)
• Extended admissibility, on QCB-spaces (Schröder)

Complexity
• Kawamura and Cook : Reg ⊆ Σ∗ → Σ∗
• Polynomial time complexity based on bff2

• allows to define notions of complexity over non
σ−compact spaces like C([0, 1],R)
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"Feasible" admissibility

Definition (Polynomial reducibility)
δ ≤P δ ′ if δ = δ ′ ◦ f with f polynomial time computable
Theorem (Kawamura & Cook)
δ� is the "largest" representation of C([0, 1],R) making
Eval : C([0, 1],R)→ [0, 1]→ R polynomial time computable.

→ For which spaces can we do the same?
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First order representations are not sufficient
Theorem
Let X be a Polish space that is not σ-compact. Then there
is no representation of C(X ,R) making the time complexity
of EvalX ,R : C(X ,R)× X → R well-defined.
(X = C([0, 1],R) for example) b
Lemma
There is no surjective partial continuous function
φ : (N→ N)→ C(N→ N,N) bounded by a total continuous
function.
Corollary
"Higher order is required to define complexity-friendly
representations."
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Higher order complexity
Finite types: τ = N | τ1 × . . .× τn → N
A notion of feasibility at all finite types: bff.
Problem: Some intuitively feasible functionals are not in bff.
Example

Γ : (C([0, 1],R)→ R)× N→ R

Γ(F , n) = ∏
0≤i≤2n

(1 + |F (hi ,n)|)

1

1

hi,n

2−n︸︷︷︸
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Higher order strategies

Player︷ ︸︸ ︷
(( x
N→ g

N)→ f
N)︸ ︷︷ ︸

Opponent
→F
N

Moves: ?f or !f (v ) + justifications.
Definition
A strategy is a function which given a list of previous moves,
outputs a valid move.
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Examples
• x = 3 ?x !x (3)
• f (x) = 2x + 1

?f ?x !x (n) !f (2n + 1)
• F (g ) = g (λx .x) + 1

?F
?g !g(n) !F (n + 1)

?h
?x !x (n) !h(n) !g(m) !F (m + 1)

?h
?x . . .
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Size of a strategy
Definition

Ss (b1, . . . , bn) = max(s1,...sn)∈Kb1×···×Kbn

|H(s, s1, . . . sn)|

Kb = {s ′ | Ss ′ 4 b}
Example
• n ∈ N has a strategy of size O(log2 n).
• f : N→ N has a strategy of size |f |(n) = max|x |≤n |f (x)|.
• The size of a strategy for F : (N→ N)→ N is at least

its modulus of continuity.
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Higher order Turing machines

Definition (HOTM)
A HOTM is a kind of oracle Turing machine which plays a
game versus its oracles.
Property
A strategy is computable ⇐⇒ it is represented by a HOTM.

Run-time of a HOTM: same as for an OTM.
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Polynomial time complexity

Definition (Higher type polynomials )
HTP = simply-typed λ−calculus with +, ∗ : N× N→ N.
Property
HTP of type 1 and 2 are respectively the usual polynomials
and the second-order polynomials.
Example
The complexity of Γ is about F , n 7→ F (λx .c)×F (λy .P(y , n))
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Higher order representations

Definition (Kleene-Kreisel Spaces)
KKS = [N,⊆,→,×]
Definition (Representation)
A representation δ of a space X with a KKS A is a
surjective function from A to X .
Definition (Polynomial reduction)
δ1 ≤P δ2 if δ1 = δ2 ◦ F for some polynomial time computable
F : A1 → A2.
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Standard representation of C(X ,Y )

Definition
δC(X ,Y )(F ) = f whenever f ◦ δX = δY ◦ F

Property
Eval : C(X ,Y )× X → Y is polynomial-time computable
w.r.t. (δC(X ,Y ), δX , δY )
Theorem
It is the largest representation making Eval polynomial.
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Conclusion

• we have a definition of higher order complexity
• new representation spaces

• we need to understand the difference with bff
• study the notion of admissibility of such

representations (c.f. Schröder).
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