Higher order complexity

Hugo Férée Mathieu Hoyrup

CCA 2013

Type two Theory of Effectivity

Computability

- Represented spaces, admissibility (Weihrauch)
- Extended admissibility, on QCB-spaces (Schröder)

Higher order Turing machines

Complexity

- Kawamura and Cook : $Reg \subset \Sigma^* \to \Sigma^*$
- Polynomial time complexity based on BFF₂
- allows to define notions of complexity over non σ —compact spaces like $\mathcal{C}([0,1],\mathbb{R})$

"Feasible" admissibility

Definition (Polynomial reducibility)

 $\delta <_P \delta'$ if $\delta = \delta' \circ f$ with f polynomial time computable

Higher order Turing machines

Theorem (Kawamura & Cook)

 δ_{\square} is the "largest" representation of $\mathcal{C}([0,1],\mathbb{R})$ making Eval: $\mathcal{C}([0,1],\mathbb{R}) \to [0,1] \to \mathbb{R}$ polynomial time computable.

→ For which spaces can we do the same?

First order representations are not sufficient

Higher order Turing machines

Theorem

Let X be a Polish space that is not σ -compact. Then there is no representation of $\mathcal{C}(X,\mathbb{R})$ making the time complexity of $Eval_{X\mathbb{R}}: \mathcal{C}(X,\mathbb{R}) \times X \to \mathbb{R}$ well-defined.

 $(X = \mathcal{C}([0,1],\mathbb{R}))$ for example) b

Lemma

There is no surjective partial continuous function $\phi: (\mathbb{N} \to \mathbb{N}) \to \mathcal{C}(\mathbb{N} \to \mathbb{N}, \mathbb{N})$ bounded by a total continuous function.

Corollary

"Higher order is required to define complexity-friendly representations."

Higher order complexity

Finite types: $\tau = \mathbb{N} \mid \tau_1 \times \ldots \times \tau_n \to \mathbb{N}$

A notion of feasibility at all finite types: BFF.

Problem: Some intuitively feasible functionals are not in BFF.

Higher order Turing machines

Example

Background & motivation

$$\Gamma: (\mathcal{C}([0,1],\mathbb{R}) \to \mathbb{R}) \times \mathbb{N} \to \mathbb{R}$$

$$\Gamma(F, n) = \prod_{0 \le i \le 2^n} (1 + |F(h_{i,n})|)$$

Higher order strategies

Higher order Turing machines

Moves: $?^f$ or $!^f(v)$ + justifications.

Definition

Background & motivation

A strategy is a function which given a list of previous moves, outputs a valid move.

Examples

Background & motivation

•
$$x = 3$$

$$\frac{?^x}{}$$
! x (3)

•
$$f(x) = 2x + 1$$

$$\frac{?^f}{?^x} ?^x \frac{!^x(n)}{!^f} !^f (2n+1)$$

•
$$F(g) = g(\lambda x.x) + 1$$

$$\frac{?^{F}}{?^{g}} ?^{g} \frac{!^{g}(n)}{?^{h}} !^{F}(n+1)$$

$$\frac{?^{h}}{?^{x}} ?^{x} \frac{!^{x}(n)}{!^{h}(n)} !^{h}(n) \frac{!^{g}(m)}{?^{h}} !^{F}(m+1)$$

Examples

•
$$x = 3$$

$$\frac{?^x}{}$$
! x (3)

•
$$f(x) = 2x + 1$$

$$\frac{?^f}{?^x}$$
 ? $\frac{!^x(n)}{?^x}$? $\frac{!^x(n)}{?^x}$? $\frac{!^x(n)}{?^x}$! $!^f(2n+1)$

•
$$F(g) = g(\lambda x.x) + 1$$

$$\frac{?^{F}}{?^{g}} ?^{g} \frac{!^{g}(n)}{?^{h}} !^{F}(n+1)$$

$$\frac{?^{h}}{?^{x}} ?^{x} \frac{!^{x}(n)}{!^{h}(n)} !^{h}(n) \frac{!^{g}(m)}{?^{h}} !^{F}(m+1)$$

Examples

Background & motivation

•
$$x = 3$$

$$\frac{?^x}{}$$
! x (3)

Higher order Turing machines

•
$$f(x) = 2x + 1$$

$$\frac{?^f}{?^x} ?^x \frac{!^x(n)}{?^x} ?^x \frac{!^x(n)}{?^x} ?^x \frac{!^x(n)}{?^x} !^f (2n+1)$$

 \bullet $F(g) = g(\lambda x.x) + 1$

Size of a strategy

Definition

Background & motivation

$$S_s(b_1,\ldots,b_n) = \max_{(s_1,\ldots s_n)\in K_{b_1}\times\cdots\times K_{b_n}} |H(s,s_1,\ldots s_n)|$$

$$K_b = \{s' \mid S_{s'} \preccurlyeq b\}$$

Higher order Turing machines

Example

- $n \in \mathbb{N}$ has a strategy of size $\mathcal{O}(\log_2 n)$.
- $f: \mathbb{N} \to \mathbb{N}$ has a strategy of size $|f|(n) = \max_{|x| \le n} |f(x)|$.
- The size of a strategy for $F:(\mathbb{N}\to\mathbb{N})\to\mathbb{N}$ is at least its modulus of continuity.

Definition (HOTM)

A HOTM is a kind of oracle Turing machine which plays a game versus its oracles.

Higher order Turing machines

Property

Background & motivation

A strategy is computable \iff it is represented by a HOTM.

Run-time of a HOTM: same as for an OTM.

Definition (Higher type polynomials)

 $HTP = \text{simply-typed } \lambda - \text{calculus with } +, * : \mathbb{N} \times \mathbb{N} \to \mathbb{N}.$

Higher order Turing machines

Property

Background & motivation

HTP of type 1 and 2 are respectively the usual polynomials and the second-order polynomials.

Example

The complexity of Γ is about \mathcal{F} , $n \mapsto \mathcal{F}(\lambda x.c) \times \mathcal{F}(\lambda y.P(y,n))$

Definition (Kleene-Kreisel Spaces)

 $KKS = [\mathbb{N}, \subset, \rightarrow, \times]$

Background & motivation

Definition (Representation)

A representation δ of a space X with a KKS A is a surjective function from A to X.

Definition (Polynomial reduction)

 $\delta_1 <_P \delta_2$ if $\delta_1 = \delta_2 \circ F$ for some polynomial time computable $F: A_1 \rightarrow A_2$

Higher order Turing machines

Standard representation of C(X, Y)

Definition

Background & motivation

$$\delta_{\mathcal{C}(X,Y)}(F) = f$$
 whenever $f \circ \delta_X = \delta_Y \circ F$

Property

Eval: $C(X,Y) \times X \to Y$ is polynomial-time computable w.r.t. $(\delta_{C(X|Y)}, \delta_X, \delta_Y)$

Higher order Turing machines

Theorem

It is the largest representation making Eval polynomial.

Background & motivation

we have a definition of higher order complexity

Higher order Turing machines

- new representation spaces
- we need to understand the difference with BFF
- study the notion of admissibility of such representations (c.f. Schröder).